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FIRST AND SECOND FUNDAMENTAL AXISYMMETRIC PROBLEMS OF ELASTICITY THEORY FOR 
DOUBLY-CONNECTED DOMAINS BOUNDED BY THE SURFACES OF A SPHERE AND A SPHEROID* 

A.G. NIKOLAYEV and V.S. PROTSENKO 

The method of constructing solutions of the fundamental boundary-value 
problems for a homogeneous Lame equation of multiconnected domains 
bounded by canonical surfaces of cylindrical and spheroidal coordinate 
systems described in /l/ is extended to domains with other geometry. 
The problems under consideration reduce to infinite systems of linear 
algebraic equations of the second kind with completely continuous 
opertors. A solution in the form of expansions in a small parameter for 
the problem of the hydrostatic pressure of a sphere with a centrally 
located spheroidal cavity is presented as an example. 

1. We consider the first and second fundamental axisymmetric problems for a homogeneous 
Lame equation 

Ca u + (1 - Zv)-I grad div u = 0 (I.11 

(v is Poisson's ratio) for a sphere with a spheroidal cavity whose axis passes through the 
centre of the sphere. Introducing identically directed systems of spherical coordinates (r,9, 
cp) and prolate spheroidal coordinates (E1,nl,q) superposed on the centres of the boundary 
surfaces, we obtain the following relation between the coordinates 

r cos 8 = c ch E1 cos nr + a, r sin 8 = c sh %, sin n1 (1.2) 

(2C is the focal length of the spheroidal system of coordinates, and (L is the spacing between 
the centres of the boundary surfaces). 

Let displacement vectors be given on the boundary 

(1.3) 

(6, e, are unit vectors of the cylindrical system of coordinates). We later assume that 

(1.4) 

We will seek the solution of problem (1.1) and (1.3) in the form 
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The following notation is used here and henceforth: 

W$,, =D(kl'[&n(~, 0, cp)], U$, = DC’ [u&z (El, rllv cp)] (k = 1,2) 
Di') = grad, D, = z grad + (4~ - 3) e,,. of’ = 2n+ 1 c Dp’ 

Dp’ = D - jPD:“DT, 2 Dp’ = D - c ch2 E,D:%* 2 2 

(1.6) 

n! 
p+1 q =chEv 

w,* = -1 I- rn I 
P, (cos e), ij = sh&j 

n! 

where P,(m) (5) and Qntm) (x) are Legendre function of the first and second kind. 
The solution (1.6) are an axisymmetric modification of the exact solutions for a sphere 

and spheroid introduced in /2/. The exact solutions for a sphere and spheroid were examined 
in somewhat different form in /3, 4/. 

We will change to spherical coordinates in the general solution (1.5) by using the 
formulas for the expansion of spherical solutions of the Lame equation in spheroidal solutions 

/2/ 

c(2) Ra ta,k =2n-_1 @!z, k - c+$!l, k+l 

cn’ (4 is the Gegenbauer function). Substituting (1.7) into 11.5), we obtain after some 
reduction 

k i -% Vi,, C (k -+ +) $lHitlu,,] 0, (q) 

l)i+k+nCt?k + Sil~a:‘+(- 1) k+n (2) C,,r, 
n=k 

(I.81 

We similarly convert (1.5) to spherical coordinates by using formulas for the expansion 
of spheroidal solutions of the Lame equation in spherical solutions /2/ 

u:,, = f 9 (- l)k+"Cf,),,:I,W:,k (1.9) 
kti 

We consequently have 

(1.10) 



53 

Changing to the coordinate mode of writing thedisplacements (1.0) and (1.101 in the basis 

ep? es and satisfying the conditions on the boundary (1.3) by using the orthogonality of the 
Legendre functions we obtain an infinite system of linear algebraic equation in a,(P) 

Here 

For k=a it is necessary to append a,(') -a,@1 = 0 to (*.flI for i = 2. 
Solving (1,llj for ar@j, we represent the infinite system in the form 

For k=O it is necessary to append a,(') = c2pf*j "= 0 to the equations 

(4) _ 
do - 

11.12) 

(1.13) 

(1.14) 

25em 2.1. For k>i,v<ji the determinants &, d, are non-zero for all &>a, The 
fallowing estimates hold: 

( A, ( > (2 - 4~) (k -I- 1)-l, I A, I > (3 - 4~)(k + I)-' (1.15) 

Proof, On the second estimate is needed in the pxoof. Writing Ag in explicit form 

we note that the last component is negative. 
function of the second kind, a formula 

Using the integral representation of the I&genre 
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(ch t - eh u)adu 

" II (q + P cht)k+a (q + q ch I@+* 

can be obtained for thefirsttwo components from which and from the inequality ]Qrcl) (q)\~kQ~(q) 

the required estimate follows. 
The infinite system (1.13) and (1.14) is the operator equation (I+ T)x = f, where CC, f 

are columns of the unknowns and the right-hand sides, respectively, I is the unit operator, 
and T is the system operator. 

Lemma 1.2. The operator T of system (1.13) and (1.14) is a completely continuous operator 
from I, into 1, for R>cch&, + a, 

Proof. As we know /5/, it is sufficient to show for the proof that the matrix coef- 
ficients of the operator are square summable. It follows directly from relations (1.12) that 
an arbitrary matrix coefficient can have the sum of a finite number of expressions of the 
form r n, k = Bn=P~~) (q) (k + fi)! R-’ 1 c’R”% 1 

as the upper bound, where B is a certain constant independent of n and k and a, IX V are fixed 
non-negative integers. We note that 

where the last series converges for R>cg+ a because of asymptotic formulas for the Legendre 
functions. Therefore, the stronger assertion 

n~-k$tkf-=- (1.16) 

is proved, where Tnk are the matrix coefficients of the operator T. 
It can be shown that when condition (1.4)is satisfied the column of the right-hand sides 

of system (1.13) and (1.14) belongs to the space 11 C 12. Then system (1.13) and (1.14) is 
correctly solvable for almost all values of the parameters therein in the Hilbert space I,, 

and an approximate solution can be obtained by the method of reduction /!i/. It follows from 
the solvability of the system in 1, and (1.4), (1.13), (1.14) and (1.16) that 

which means absolute and uniform convergence of the series (1.5), (1.8) and (1.10). 
Now, let stresses be given on the boundary (G is the shear modulus) 

(1.17) 

m 

FU,+,, = XX-' kzO [A!$Pf’ (cos ql) e,, + Ap!2Pk (cos ql) e.] 

h = (q2 - cosqp 

The solution of the first fundamental problem will be sought, as before, in the form of 
(1.5). Going over from displacements to stresses on the appropriate boundary surfaces in 
(1.8) and (1.10) and satisfying conditions (1.17), we obtain an infinite system of linear 
algebraic Eqs.(l.ll) with the following matrix coefficients 

(1.18) 
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pa’ n,k = 
(- l)k+n c(k+l)l [c$,-(2y-1_ ‘“+2;)y)cyq 

2flk+‘0, (d 

tz,‘;’ = (_ l)‘fn+l k + L + &pi-” (q) C$,;‘, ( 4 
t:;;' = (- l)"+"(k+ +)$ x 

[ 
& &"(q)c~;:.'k - (f-&(q) +2vp,(+$] 

$;4':' I(- l)"+*+r k+ L pp'(9)_$C~;k 
( 2) 

t:;;'= (- l)k+“(k+ +)+ x 

[ 
P(kl) (q) Cg’k - (k4”&(!!g + (2Y - l)PP'(q) 

) I 
&a,):,‘, 

For k =0 the equalities a,,(r) = a,,@) = u,,(Y) = 0 must be appended to (1.11) for 

The two mentioned equations have the form 

a;'= &Q,(Q) [+.$(+) + (1 -2v)Qf'(q)]-1, ai*= - y2fF;);) 

The statics conditions for this problem reduce to the relationship 

cq_4 &&a) = -R%i,,1(") 

i = 2. 

(1.19) 

(1.20) 

from which it follows that one of Eqs.Cl.19) is a corollary of the other, which means that 
the system is consistent for k =O. 

In the case of the first boundary-value problem the estimates 

I 4 I > 2vk (k + I)-‘, I 4 I > (1 - y) cth Eo, y < 1 

are proved for the determinants A1 and AZ. 
Investigation of the solvability of the infinite system is completely analogous to that 

performed earlier for the second boundary-value problem. 

2. Let us consider the first and second axisymmetric problems for (1.1) for a prolate 
spheroid with a spherical cavity whose centre is on the spheroid axis at a distance a from 

its centre. We introduce an identically directed spheroidal system of coordinates (5, rl? cp) 
and a spherical system of coordinates (rl,e,,cp) superposed on the centres of the boundary 
surfaces. Then relationships (1.2) must be replaced by 

c ch 5 cos T) = r, cos 8, + a, c sh f sin n = r, sin 8, (2.1) 

Let the displacement vectors 

subject to condition (1.4), be given on the boundary. 
We will seek the solution of the problem in the form 

u= 1 (2.3) 

where the notation 
Proceeding as 

utions of the Lame 

taken in (1.6) is used. 
in Sect.1, by using the expansion formulas of the external spherical sol- 
equation in external spheroidal solutions. 
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and internal spheroidal solutions in internal spherical solutions /21 

we represent the displacement (2.3) in spherical and spheroidal systems of coordinate and we 
satisfy the boundary conditions (2.2). The infinite system of linear algebraic equations has 
the form (1.11) with the following matrix coefficients 

Sk.1 = L (1) sp, = - k+2 (2) 
k’ 1 2k+3 ’ Sk,1 = - 1, (2.4) 

$\ zz - I 

SF\=- pl;l) (rl) 
SF,)2 = 

(k- I)qPI;:)(q) 
Pt(Q)' 

(4) (4Y - 3)pk ('?) +k@,_, (d 

'k(q) ' 
Sk,2 = Pk(4) 

pm _ 
RkP(') 

wk - - (k+ i)!?‘;(q) ’ 
tw) _ 

RkP(') 

*,k --TJFf$ 

t(3”) 2k+ 1 R"+' 
n,k =--CT Qi-” (q) Pp’,, tt;;) = -. 2k G Qk (q) f’c,‘h 

c 

k--l ycl) 31 2k--1 nk 

t(3,2) 2k+l Rn+' 
n,k = - nl [Q?(q) pii?, - (k + 2) qQ!G? ((1) pi%1 e 

t’4’2’ 2k + 1 fp+1 

n,k = -7 [Qk(Q)@,)n + ((4v- 3)&(q) - (k + 1) '@k+l(Q))@?~l C 

For k = 0 equations s,,(l) = e0(3) = 0 must be added to (1.11) for i = 2. 

Lemma 2.1. For k> 1, v < 'I2 the determinants A,, A, of system (1.13) and (2.4) are 
non-zero for all El > 0. The following estimates hold: 

1 Al 1 > (3-4~) (k + I)-‘, 1 A 2 1 > (2-4~) (k + I)-’ th 50 (2.5) 

Proof. We will prove the second estimate. We write A8 in the explicit form 

‘k (4)’ 11% = 
3 - 4v 

k (k _+ 1) ‘t’ (q) ‘, (q) - &- pf’ (q) p,_, (4) + f pf?:ll (9) P, (q) 

It follows from the recursion formulas for the Legendre functions that 

Pi? (q) P, (4) - kqPf’ (9) Pk_l (q) + (k + I) q$!!:l, (4) ‘, (q) = 

!Zk + I)-' [P f$ (q) ‘i?l (q) - P(l) (q) Pg!l (@I k+l 

The right-hand side of the last formula is expanded ina power series in q-1, which is 
strictly positive for %.>O, k> 1. Taking account of the inequality P,") (9) > k th %o ph. (d, We 

obtain the required result. 

Lennna 2.2. The operator T of system (1.13) with the matrix coefficients (2.4) is a 
completely continuous operator from I, into 1, for cq- a>R if aq > c and for q (c"_ 



a2)'/* > R if aq < c. 

Proof. Consider an arbitrary matrix coefficient of the operator of the system T. It can 
have a finite sum of expressions of the form 

as upper bound, where B is a constant independent of n and k and a,y are fixed non-negative 

integers. 
Let us estimate the sum of the squares of z,,np. To do this we consider the formula /Ii/ 

P&m,“’ (cos e,) 2 (-$ 
r7Z+l =c(n (ch 5) Pp’ (cos q) 

1 k=n 

in which all the parameters are connected by the relationship (2.1). It is known that the 
functions 

[(k + l/z) (k - n)!/(k -+ m)!]‘h pkcrn) (2) 

form a complete orthonormal system in L2[--1,l]. Let us write the Parseval equality for this 
system 

Hence it follows that 

The series on the right converges if rl>R. Finding the minimum rl we obtain that it 
equals cg- (I if aq > c and ij (~2 _ a~)‘/2 if ag< C. Therefore, on satisfying the conditions 
of the lemma, the series comprised of squares of z,& converges, from which the proof of the 
assertion follows. 

Remark. The conditions imposed by Lemma 2.2 on the parameters of the problem have the 
following geometric meaning: they require that the boundary surfaces do not intersect. 

The question of the solvability of the infinite system can be solved exactly as in Sect. 

1. 

We consider the first boundary-value problem for a spheroid with a spherical cavity. Let 

the stresses 

be given on the boundary. 
We will seek the solution of the problem in the form (2.3). Carrying out the above- 

mentioned calculations and changing from displacements to stresses, after satisfying the 
boundary conditions we obtain an infinite system of linear algebraic Eqs.(l.ll) with the 
following matrix coefficients 

(2.6) 

(2.7) 
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,p,q _ kR’-l %!k 
n.k - (k’1)!~ 

p, _ Rk-’ _e& 
n,k - - (k - I)! pn Cd 

ts,k = - - 

gy) = - Zk+I Rn+l d 
-n! -& Qp (y) PE’,, 

c 
t$’ = -I - 

Zk -+- 1 p+1 

c n! Qf' (d P)i’,‘n 
&3>2l 
n,t = 

h-.----m 

For k =O the equalities a@ = 431 = &*I = 0 must be added to fl.llf for i 222. 
These equations have the form 

(2.8) 

rt follows from the statics conditions [1,2Of that one of the Eqs. (2.8) is a corollary 
of the other, i.e., the system is consistent for k=O. 

fn the case of the first boundary-value problem the following estimates are obtained for 
the determinants A, and A,: 

I A, I > (k + 1) H-2, [ A, I > k (k + 2)-l2v th %o 

The solvability of the infinite system is established as before. 

3. As an application we will consider the problem of an external hydrostatic pressure p 
acting on a sphere with a centrally located force-free spheroidal cavity. The conditions on 
the boundary have the form (1.17) where 

The solution of the problem is given by (1.51, where e,@f =o, nkcil(i i= 1, * ~ mI 4) satisfy 
the infinite system of linear algebraic Eqs.(l.l3) with the matrix coefficients (1.181 
evaluated at a = 0. We will seek the solution of system (1.131 in the form of series in 
the small parameter E = q/R. Expanding the unknown uk@) and the matrix coefficients in a 
power series in a, substituting them inta (1.13) and equating coefficients of identical powers 
of E we have 

Then we obtain for the stress on the sphere surface for 6 -0 



u@=uq=p - I+ 1 e8 
PAd’~ W [ - (+ Y’ + + - v) Qf’ (4 - 3@7Q, (d ] ] + o (~4) 
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(3.1) 

The first component in (3.1) corresponds to the case of a homogeneous sphere and agrees 
with the known values of IJO and a, in the Lame problem. The first correction to it is of 
the third order of smallness and, as can be shown, is negative for Y < 'Ia . Therefore, the 
presence of a spheroidal cavity results in an increase in the compressive stresses os and om 
on the sphere surface for 0 = 0. If we let Q -+ 00 in (3.1) for c = R,/q, then the 

spheroidal cavity becomes a spherical cavity and the stress equals 

ug = ue = p [-I - V2csl + o (g”), 5 = RJR 

The latter formula agrees with the two first terms of the expansions of uO,urp in power 
series in 5 in the Lame problem of determining the state of stress of a hollow sphere sub- 
jected to uniform external pressure /7/. 
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